翻訳と辞書
Words near each other
・ MYH2
・ MYH3
・ MYH4
・ MYH6
・ MYH7
・ MYH7B
・ MYH8
・ MYH9
・ Myhailo Yadrenko
・ MyHandle
・ Myhaylo Knysh
・ MyHDL
・ MyHeartMap Challenge
・ MyHeritage
・ Myhill
Myhill isomorphism theorem
・ Myhill's property
・ Myhill–Nerode theorem
・ Myhomepage
・ Myhre
・ Myhre syndrome
・ Myhre Township, Lake of the Woods County, Minnesota
・ Myhriss
・ MyHSR Corp
・ Myia
・ Myiacerapis
・ Myiagra
・ Myiagros
・ Myiarchus
・ Myiasis


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Myhill isomorphism theorem : ウィキペディア英語版
Myhill isomorphism theorem

In computability theory the Myhill isomorphism theorem, named after John Myhill, provides a characterization for two numberings to induce the same notion of computability on a set.
== Myhill isomorphism theorem ==

Sets ''A'' and ''B'' of natural numbers are said to be recursively isomorphic if there is a total computable bijection ''f'' from the set of natural numbers to itself such that ''f''(''A'') = ''B''.
A set ''A'' of natural numbers is said to be one-one reducible to a set ''B'' if there is a total computable injection ''f'' on the natural numbers such that f(A) \subseteq B and f(\mathbb \setminus A) \subseteq \mathbb \setminus B.
Myhill's isomorphism theorem states that two sets ''A'' and ''B'' of natural numbers are recursively isomorphic if and only if ''A'' is one-reducible to ''B'' and ''B'' is one-reducible to ''A''. The theorem is proved by an effective version of the argument used for the Schroeder–Bernstein theorem.
A corollary of Myhill's theorem is that two total numberings are one-equivalent if and only if they are computably isomorphic.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Myhill isomorphism theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.